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Snap-back repellers and chaotic attractors
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When homoclinic orbits to an expanding periodic point exist, the point is called a snap-back repeller. Here,
we consider the two-dimensional piecewise-linear map in canonical form, continuous and discontinuous,
showing how snap-back repellers may be associated with robust chaotic attracting sets (not only with chaotic
repellers). Examples are given both for the continuous and discontinuous maps.
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I. INTRODUCTION

Since the pioneering work of Poincaré, in the last 60 years
the studies on homoclinic orbits were mainly associated with
saddle cycles in flows [1,2]. As well as the transverse ho-
moclinic and heteroclinic points of saddle cycles, homoclinic
orbits and chaotic dynamics associated with saddle-foci
cycles have also been studied (see [3,4] and the surveys
books [5,6]). Dealing with orbits homoclinic to saddles or
saddle foci, the common factor is that homoclinic orbits can
be studied in suitable invertible maps. Thus, homoclinic or-
bits to expanding repelling points (when all the eigenvalues
are higher than 1 in modulus) cannot occur.

However, recent applications in physics and engineering
have lead to noninvertible piecewise smooth systems. Sev-
eral works have been published dealing with the two-
dimensional piecewise-linear map in canonical form, where
the parameters are the determinants and the traces of two
linear maps f; and fi which are defined in two half planes L
and R,

. fL(xsy)’ (X,y) e L
fibo) {fze(x,y), (x,y) € R, (1)
where
fL:(x)H<TLx+y+ML>’ L={(x,y):x =0}, (2)
y - Opx
fR:<x) . (rRx+y + ,U«R)’ Re{n)x >0 ()
y — Opx

Here, 7;, 7¢ are the traces and &;, Oy are the determinants of
the Jacobian matrix of the map f in the left and right half
planes, i.e., in L and R, respectively, R2=LUR. The map is
continuous when u; =up and discontinuous otherwise.
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This model was introduced as a generalization of the one-
dimensional piecewise-linear skew-tent map by Nusse and
Yorke [7]. Since then, it has been investigated in many pa-
pers (see [8—18] to cite a few) and is often used in applica-
tions [19-23].

For a wide region of the parameter space, the map (1) is
noninvertible. In fact, assuming both determinants &; and Jg
different from zero, when they have opposite sign, &; 9 <O,
then Eq. (1) is noninvertible. We remark that the case in
which one determinant is equal to zero is particular because
a half plane is mapped into the critical line y=0, so it is
indeed noninvertible. It is degenerate, however, since the set
of noninvertible points is only the critical line (a set of zero
measure in the phase space) and the preimage of one critical
point is a half line. When &; 6 <0, however, the region of
points having two distinct rank-one preimages is a half
plane. In this case, there exists a new type of homoclinic
orbit associated with repelling nodes and foci which, as re-
called above, cannot occur in invertible systems. Marotto
was the first to prove in [24] that homoclinic orbits may
occur also for these repelling points and that chaos is asso-
ciated with the existence of homoclinic orbits, introducing
the term of snap-back repellers (SBRs). Indeed, his first work
included a minor technical mistake and he himself gave a
corrected version in [25] after the appearance of several pa-
pers which, trying to correct the mistake, provided less gen-
eral proofs (as in Li and Chen [26]).

Recently, the same map (1) has been considered in [27],
showing how SBR also can occur in that standard map. All
the examples shown there, however, are associated with
“chaotic repellers.” That is, the chaotic sets associated with
SBR nodes exist on invariant sets of zero measure in the
phase space and almost all the trajectories are divergent. It is
clear that this situation is not useful in the applications.
Moreover, it is a widely shared opinion that SBRs are asso-
ciated with this kind of “repelling chaos.” Maybe this is quite
common when repelling nodes are considered, while this is
not generically true when repelling foci become SBR. In
fact, as we shall see in this work, when a repelling focus is
surrounded by an annular invariant chaotic area, then it is
highly probable that the SBR bifurcation leads to a chaotic
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attractor.” This property was first evidenced in [28] (see also
in [29]). Recently, in [30], the Marotto’s results were also
generalized to continuous and discontinuous piecewise
smooth systems.

The purpose of the present work is to show how common
are the snap-back repellers in the piecewise-linear canonical
map (1) both in the continuous case (u;=pug, considered in
Sec. II) and in the discontinuous one (u; # ug, considered in
Sec. III), leading to robust (in the sense of [19], as persistent
as a function of the parameters) chaotic attractors. Moreover,
we shall also see the occurrence of the first homoclinic bi-
furcation, that is, the transition of a repelling cycle to SBR,
showing that it is associated with critical homoclinic orbits.
In fact, in the cases of repelling foci here described, in which
the cycles are surrounded by an annular chaotic area, the
transition to SBR occurs when the first-rank preimage of the
cycle, from outside the area, merges on the boundary and the
boundary consists of critical segments. Section IV concludes.

II. CONTINUOUS CASE

Following [30], the border line x=0 is denoted LC_; and
its forward images by using f; and fj are called critical
lines. Let L* and R* denote the fixed points of f; and fx
determined by

( Mi _5ilu’i
1—Ti+5l"1—7'i+5i

)9 i:L’R,

respectively. L* is the fixed point of the map f if w,/(1-7,
+6;) =0, otherwise it is a so-called virtual fixed point. Simi-
larly, R is the fixed point of f if ug/(1—7x+ ;) =0, other-
wise it is virtual. The stability of the fixed point R* is defined
by the eigenvalues \; gy of the Jacobian matrix of the map
fr» which are

Nioaw = (TR = \’leg_45R)/2. (4)

Let us consider here the following parameters: 7;,=0.3, J;
=-0.6, at which L* is virtual, while we need R* to exist as an
unstable focus in the continuous case with u;=ug=1.

The two-dimensional bifurcation diagram in Fig. 1 shows
in different gray tonalities periodicity regions associated with
cycles of different periods appearing after the center bifurca-
tion, Neimark-Sacker bifurcation for piecewise-linear maps
of the fixed point R*, occurring at Sz=1. The term center
bifurcation is used in this case (see [14]) because the bifur-
cation associated with complex eigenvalues in a linear map
is of this kind. At the bifurcation value (here Sz=1), the fixed
point R* is a center and when the rotation number associated
with the complex eigenvalues is rational, there exists an in-
variant polygon filled with periodic orbits, while an invariant
ellipse filled with quasiperiodic orbits exists when the rota-
tion number is irrational. In [14], the boundary of this invari-
ant region is completely characterized, as well as the closed

1Although this is not necessarily always true because the transi-
tion “chaotic attractor to chaotic repeller” may occur “before” the
SBR bifurcation, in which case the SBR bifurcations are not asso-
ciated with the existence of a chaotic attractor.
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FIG. 1. Two-dimensional bifurcation diagram in the parameter
plane (8, ) at 7,=0.3, 8, =-0.6 fixed. White points denote chaos
or cycles of period greater than 45.

invariant curve which is the resulting attracting set after the
bifurcation, for 83> 1.

As we can see from the structure of the bifurcation curves
in Fig. 1, in infinitely many periodicity regions, the attracting
cycle leads to a secondary center bifurcation as the cycle
becomes a repelling focus. This will allow us to show first
the snap-back bifurcation of a cycle and then that of the fixed
point R*, all leading to chaotic attractors. As an example, we
have taken the parameters S, and 73 inside the region of the
attracting six-cycle, but it is clear that similar results can be
observed taking the parameters inside other periodicity re-
gions. As long as a point (Jg,7g) is inside the periodicity
region of the six-cycle (the analog of an Arnold’s tongue),
the attracting six-cycle existing after the center bifurcation of
the fixed point is an attracting node, coupled with a saddle
six-cycle, and the unstable set of the saddle gives a saddle-
node connection which represents a closed invariant attract-
ing curve (also called torus connection). The destruction of
this closed invariant curve can occur in several different
ways and has been studied in several papers. In the period-
icity regions shown in Fig. 1, this torus destruction occurs
due to the transition of the eigenvalues from real to complex,
so that the six-cycle attracting node becomes a six-cycle at-
tracting focus. The vertical border observed in the periodicity
region of the cycle corresponds to the transition six-cycle
attracting focus to six-cycle repelling focus. That is, a sec-
ondary center bifurcation occurs: the six fixed points of the
piecewise-linear map f° have the same kind of bifurcation as
the one described above for the fixed point. When the param-
eters are taken exactly on the vertical boundary, six closed
invariant polygons or six closed invariant elliptic regions ex-
ist (depending on the rotation number), which are followed
by six closed invariant attracting curves. Increasing the pa-
rameter O, these closed curves are destroyed and sequences
of homoclinic bifurcations of some saddle cycles lead to six
cyclical annular chaotic regions as shown in Fig. 2(a).

In Fig. 2(a), we can see that the fixed point R* is far from
the chaotic areas and that the six cyclical chaotic areas have
an annular structure. Notice that the numerical simulation in
Fig. 2(a) clearly shows the existence of annular areas around
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FIG. 2. Attracting sets at 7,=0.3, §;=—0.6, u;=ug=1, and 75
=1.1. (a) 5xz=1.3; (b) 8x=1.35; (c) x=1.5; (d) 8x=2.3. (e) Bound-
ary of the annular chaotic area shown in (c). (f) Boundary of the
chaotic area shown in (d).

the cycle and even if we do not prove rigorously the exis-
tence of true robust chaos, the relevant fact is that the cycle
cannot have homoclinic orbits. In fact, as long as the six
areas have a hole inside, then the six-cycle repelling focus is
not a SBR: no homoclinic orbits to it can exist. The six-cycle
becomes a SBR when the holes disappear, leading to six
closed chaotic regions, as shown in Fig. 2(b). Continuing to
increase the parameter J, the six pieces merge into a unique
annular chaotic area [Fig. 2(c)] but as long as there is a hole
around the fixed point R, the fixed point cannot be a SBR
because there are no homoclinic orbits to it. In fact, the sim-
ply connected region D given by the annular area and the
hole inside [see Fig. 2(c)] is invariant, f(D)=D, and the
rank-one preimage of R* distinct from itself, that is, R”,
=f;'(R*), given by

OrMr OpMR = TLORMR
5L(1 - 'TR+ 5R)’ 5L(1 - 'TR+ 5R)

11 (R) =( - ML), (5)

is external to this area [see Fig. 2(c)] and thus external to D
are necessarily also all its further preimages (although here,
there are no further preimages).

PHYSICAL REVIEW E 81, 046202 (2010)

However, even in cases in which the rank-one preimage
R’ is below the line y=0 external to the invariant area D, all
the other preimages are necessarily outside the invariant
area. This is simple to prove (as shown also in [28,30]): if
not, assume that a preimage of some rank k is in D, then after
k iterations this point must be still in D, while after k itera-
tions, it is mapped in R”, external to D, which is a contra-
diction. Inside the invariant area D, the trajectory of a point
inside the hole, different from the fixed point, spirals and
enters the chaotic annular set. Thus, no point of this invariant
area can be mapped close to the fixed point unstable focus,
so that it cannot have homoclinic trajectories. This can be
stated as follows: as long as the rank-one preimage of the
fixed point R* different from itself, say R*,=f;'(R"), is ex-
ternal to the invariant area, the fixed point cannot be a SBR.
Increasing the parameter &, the hole around R* decreases
and the transition to SBR occurs when the preimage R”,
contacts the boundary of the chaotic area, crossing the
boundary made up of critical curves and entering inside the
chaotic area, together with R*. In Fig. 2(d), we also show a
few preimages of R*, with the inverse f5',

fr (w,0) = (= v/ 8,1t — pug + TRV BR) s

which reaches R* showing that this is a homoclinic orbit and
that R is now a SBR.

We note that in the works by Marotto, as well as in [27],
nothing is stated about the bifurcation which leads a repel-
ling fixed point from not a SBR (i.e., without homoclinic
orbits) to a SBR (i.e., to have homoclinic orbits). As we have
seen above, in the case of a cycle repelling focus for which
an invariant annular area exists bounded by critical curves,
this bifurcation can be precisely studied. Let us first recall
that the boundary of the chaotic area is given by arcs of
critical curves obtained iterating the so-called “germ” on
LC_;, which is given by the portion of critical curve x=0
inside the invariant area. This is proved in [30], however, we
can easily recall here this property. Given an invariant set A,
which means that f(A)=A, let (g)=ANLC_;=AN(x=0).
Then the image f(A) includes f(g) which belongs to LC (the
line y=0) on the external boundary. As the set A is invariant,
all the forward images of (g) belong to A, and as f(g) is on
the external boundary, all its images are either on the bound-
ary or inside. In particular, all the boundary points are nec-
essarily belonging to segments images of portions of (g).
In Fig. 2(e), we show that both the internal and external
boundaries of the annular chaotic set are obtained by seven
images of the small generating segment (g) on x=0 given by
y €[-2.8,0]. As the parameter 8 increases, the preimage
R”, comes closer to LC (y=0) and the hole around the fixed
point R* shrinks to the point itself. At the bifurcation value
Sg=2.2, at which R, belongs to the boundary y=0 of the
chaotic area, the hole has disappeared and the fixed point R
is crossed by all the critical lines of any rank. This is the
homoclinic bifurcation, or SBR bifurcation, leading a repel-
ling focus to become SBR and is associated with infinitely
many critical homoclinic orbits (critical because all the ho-
moclinic orbits must have a point on the critical set x=0).
After the contact, when R* and Rfl are inside [as shown in
Fig. 2(f), where the boundary of the invariant area is ob-
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FIG. 3. Attracting sets at 77,=0.3, 6,=—-0.6, u;=3, ug=0.1, and
Tr=1.1. (a) r=1.53; (b) S=1.5385; (c) Sx=1.6; (d) S=1.9.

tained by five images of the generating segment (g) on x
=0 given by y € [-4.2,0]], there is an explosion of infinitely
many noncritical homoclinic orbits [one of which is shown
in Fig. 2(d)].

It is now clear that a similar bifurcation occurs for the
six-cycle: considering the power f° of the map, each point is
a fixed point of a piecewise-linear map, with suitable critical
curves, and the annular chaotic regions are bounded by seg-
ments of critical curves. The SBR bifurcation commented
above occurs when the rank-one preimage of the cycle
merges on the boundary of the annular area.

III. DISCONTINUOUS CASE

A behavior similar to the one described in the previous
section occurs also in the discontinuous case. Let us fix the
following parameters, 7;,=0.3, 8, =-0.65, at which L* is vir-
tual, in the discontinuous case with u; =3 and ur=0.1. At
7.=1.1 and &z=1.53, the fixed point R is an unstable focus
and a stable four-cycle around it exists, as shown in Fig. 3(a).
Then, as before, increasing the parameter d;, we can see the
secondary center bifurcation of the four-cycle followed by
chaotic areas [Fig. 3(b)]. After that, we have first the transi-
tion to SBR of the four-cycle [as we can see, no holes exist
in Fig. 3(c)] while the fixed point R* and its rank-one preim-
age R*,=f,'(R") are far from the one-piece chaotic area.
Increasing the parameter 8, in Fig. 3(d) we can see that
these two points are inside the chaotic area and homoclinic
orbits to R* can be found. As before, the fixed point R* be-
comes a SBR when its rank-one preimage R”, has a contact
with the chaotic area, entering inside it. We only note that the
difference with respect to the continuous case is in the arcs
of critical curves bounding the invariant areas. In the con-
tinuous case, the critical set LC is a curve: it is the unique
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FIG. 4. Images of critical segments.

image of x=0 and the boundary of an invariant area is ob-
tained by the images of a unique arc of critical curve. While
in the discontinuous case we have two critical curves LC
obtained by the images of x=0 with the two functions f; and
[fr- The boundaries of an invariant area are detected by taking
the images of an arc of x=0 both with f; and f3.

In Fig. 4(a), we show the boundary of the invariant area in
the case of Fig. 3(d), which is obtained by six iterations of
the generating segment (g) on x=0 given by y € [-3.8,0].
The iterations f’,}(g) are shown in black, those of ﬁ(g) in
gray. In Fig. 4(b), we show 35 images of a very small seg-
ment on x=0 (given by y € [-0.2,0]) close to the fixed point
R*, showing that we can reach the point R”,, thus giving
numerical evidence of the existence of preimages of R”,
reaching the fixed point R* and giving homoclinic orbits, so
that it is a SBR.

We remark that the continuous and discontinuous cases
are not so much different. As noticed above, the difference
with respect to the continuous case is only in the arcs of
critical curves bounding the invariant areas. Thus, having a
fixed point in the right side R, the important fact is that the
preimage of the fixed point crosses the boundary through a
critical arc belonging to the images f,;(g) which indeed oc-
curs in our example, as shown Fig. 4(a), where these critical
arcs are in black. In both cases (continuous and discontinu-
ous), we have that before the first SBR bifurcation, no ho-
moclinic orbit can exist. The first SBR bifurcation occurs
when the rank-one preimage of the fixed point (or cycle)
under study merges with a critical segment on the boundary
of the annular absorbing area. In both cases at the bifurcation
value, we have infinitely many homoclinic orbits and all are
critical. On the other side, after the bifurcation, in both cases
we have an explosion of noncritical homoclinic orbits (this is
the reason why such bifurcations are also called ) explo-
sions).

IV. CONCLUSIONS

In this work, we have shown how common snap-back
repellers are in the piecewise-linear canonical map (1), par-
ticularly when associated with repelling cycles which are
foci. In such cases, we have shown that the transition of a
cycle from repelling focus to SBR often leads to attracting
chaotic areas, both in the continuous (u;=pug) and in the
discontinuous (u; # ug) maps. That is, the snap-back repel-
ler may be trapped inside an invariant chaotic attractor,
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which is robust, as persistent as a function of the parameters.
Moreover, we have shown how it is possible to characterize
the first transition of a cycle to SBR via the occurrence of
critical homoclinic orbits. The existence of an annular cha-
otic area leads to a quite easy condition characterizing the
bifurcation value leading to the first SBR. However, it is
worth noticing that this first bifurcation is generally followed
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by other “homoclinic explosions” leading to an increase of
the homoclinic orbits and always characterized by the occur-
rence of critical homoclinic orbits. As one-dimensional ana-
log, we can consider the first SBR bifurcation occurring to
the positive fixed point in the well-known logistic map x’
=ux(1—x), which is then followed by infinitely many other
homoclinic explosions as the parameter w tends to 4.
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